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Dissipation in Laplacian fields across irregular boundaries
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The entropy production associated to a Laplacian field distributed across irregular boundaries is studied. In
the context of the active zone approximation an explicit expression is given for the entropy production in terms
of geometry, whose relation to the variational formulation is discussed. It is shown that the entropy production
diminishes for successive prefractal generations of the same fractal generator, so that the final fractal object is
expected to dissipate less than all previous ones. The relevance of this result in the abundance of fractal
surfaces or interfaces observed in nature is discussed.

DOI: 10.1103/PhysRevE.64.011115 PACS number~s!: 65.40.Gr, 05.70.Ln, 05.45.Df, 47.53.1n
la
g
r

e
on
le

s
tin

aw
e

s

tw
s
a

hi
na
m
ar

er
ns
he
he
-

iss

ta
n
b
y

t,
e
ely,
er
s
oth

e
in-
to

III
ted
re-
tal

ce.
ted
are

tity.
on-
ss

i-

d

I. INTRODUCTION

Recently, a number of studies on the role of the irregu
ity of a boundary in the spatial distribution of a field obeyin
Laplace’s equation and of its associated flux has been
ported. In particular, the case of fractal boundaries has b
analyzed in depth using results from harmonic analysis al
with extensive numerical computations based on finite e
ment techniques@1–4#.

One of the principal conclusions emerging from the
studies is the existence of universal scaling laws culmina
in the derivation of interesting expressions for theimpedance
describing the system’s linear response. Many of these l
find their origin in Makarov’s theorem stating that, whatev
the shape of an irregular~simply connected! boundary in two
dimensions might be, theactive zonein which most of the
flux generated by a Laplacian field is concentrated, scale
a length@5–7#.

The relevance of the above results stems mainly from
factors. First, under ordinary conditions many familiar tran
port phenomena such as diffusion and heat conduction
described in the steady state by Laplacian fields@8#. And
second, in nature as well as in technology the space in w
these fields are distributed is far from regular. The termi
part of the respiratory system of mammals, biological me
branes, porous electrodes or catalysts, provide some ch
teristic examples@8–14#.

Our objective in the present study is to explore an alt
native way to characterize the complexity of Laplacian tra
port across irregular boundaries, based on irreversible t
modynamics. More specifically we will be interested in t
behavior of thedissipationgenerated by the underlying pro
cess, as the irregularity of the boundary is increased. D
pation is here measured by theentropy production, arguably
the central quantity of irreversible thermodynamics@15,16#.
It has been shown that under the assumption of cons
phenomenological coefficients linking the fluxes to the co
straints this quantity satisfies a variational principle, there
playing in nonequilibrium a role analogous to thermod
063-651X/2001/64~1!/011115~10!/$20.00 64 0111
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namic potentials in equilibrium. Curiously, as it will turn ou
the range of validity of this result is incompatible with th
Laplacian character of the associated field and, convers
when this field is Laplacian entropy production no long
follows a variational principle. Nevertheless, it still provide
an interesting characterization of nonequilibrium states, b
locally in space and globally for the system as a whole. W
shall see how the ‘‘active zone’’ concept allows one to
corporate in this characterization information pertaining
the geometry of the boundaries.

The general formulation is laid down in Sec. II. In Sec.
the entropy production associated to diffusion is evalua
within the active zone approximation for boundaries cor
sponding to the first two generations of an eventually frac
boundary. It is found that fragmentation tends todecrease
both the total dissipation and the dissipation per unit surfa
In Sec. IV the results are confronted with, and complemen
by, those of numerical simulations. The main conclusions
summarized in Sec. V.

II. FORMULATION

Let f be a scalar field associated to a conserved quan
It is supposed that under the action of a nonequilibrium c
straint this field gives rise to a single irreversible proce
whose fluxJ and the associated forceX are vectors. While,
typically, X is the space derivative of some functionf of f
related to the derivative of a thermodynamic potential,J can
be related tof only through an appropriate phenomenolog
cal, or constitutive relation,

J5L~f!“ f ~f!, L.0, ~1!

whereL is the~generally state-dependent! phenomenological
or Onsanger coefficient. The fieldf obeys, then, to a close
evolution equation of the form

]f

]t
52div J52div L~f!“ f ~f!, ~2!
©2001 The American Physical Society15-1
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it being understood that any extra factors in the left-ha
side arising from thermodynamic derivatives~such as spe-
cific heat, etc.! have been absorbed in a suitably resca
time.

The local entropy production associated with~1! and ~2!
is

s5J•X5L~f!„“ f ~f!…2>0, ~3!

the overall dissipation being

P5E
V
sdr , ~4!

whereV is the volume occupied by the system.
Let us assume first thatL is strictly constant~state-

independent!. Equation~2! implies, then, that in the stead
statef (f) obeys Laplace’s equation,

div“ f ~f!5“

2f ~f!50. ~5!

Typically, the dependence off on f is nonlinear. For in-
stance, in the diffusion of a solute in a solvent, say in
electrolytic cell, and in heat conduction in a slab one h
respectively,

f 52
m

T
~diffusion!,

~6!

f 5
1

T
~heat conduction!,

m being the chemical potential andT the temperature. In an
ideal mixturem5m* 1kT ln c, c being the solute concentra
tion, k the Boltzmann constant, andm* the standard chemi
cal potential. It follows that the Laplacian fields associated
diffusion and heat conduction whenL is constant are respec
tively, ln c and T21 rather thanc and T themselves. As
shown in irreversible thermodynamics under the same
sumptions, and provided that the boundary conditions
fixed or zero-flux ones, the total entropy productionP is
minimum at the steady state~Prigogine’s theorem! @15,16#,

P5LE
V
„“ f ~f!…2dr . ~7!

To see this we differentiate both sides of Eq.~7! with respect
to time,

]P

]t
52LE

V
“ f ~f!•“

] f

]t
dr ~8!

or, integrating by parts and using the boundary conditio
Eq. ~2! and the convexity of the thermodynamic potential

]P

]t
52E

V
S ] f

]f D S ]f

]t D 2

dr<0. ~9!

In real world systemsL is rarely constant. More com
monly it is, rather, a combination ofL and f that varies
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slowly in a certain relevant range of values of the state v
ables. Taking up our two examples of diffusion and he
conduction one has, for instance,

J52D“c ~Fick’s law!,
~10!

D5
kL

c
'const,

and

J52l“T ~Fourier’s law!,
~11!

l5
L

T2 'const

It follows immediately from Eq.~2! that c and T are, then,
Laplacian fields. As a counterpart, the entropy product
loses its variational character. Below, we illustrate this in
case of diffusion, but the arguments apply to heat conduc
as well. We have

P5E
V
~2D“c!•“S 2m

T Ddr ~12!

or, using the expression ofm for an ideal mixture introduced
above,

P5DkE
V

~“c!2

c
dr . ~13!

Hence,

]P

]t
5DkE

V

21

c2

]c

]t
~“c!2dr12DkE

V

1

c
~“c!•“S ]c

]t Ddr .

~14!

Integrating again by parts and using the boundary conditi
and the diffusion equation one has

]P

]t
522kE

V

1

c S ]c

]t D
2

dr1DkE
V

~“c!2

c2

]c

]t
dr . ~15!

While the first term is negative definite, the second one
no definite sign: dissipation no longer derives from a var
tional principle. On the other hand, following a procedu
similar to the one leading to Eq.~9!, one easily sees that th
functional

Q5E
V
~“c!2dr ~16!

is extremal in the steady state@17#.
In the sequel we will be interested in the behavior ofP as

given by Eq.~13! under the condition that, as stated abovec
satisfies in the steady state Laplaces’s equation

“

2c50. ~17!
5-2
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Before we address the role of complex boundaries we ev
ate bothc and P in the simple reference case of a tw
dimensional box of heightLy and lengthLx submitted to
Dirichlet conditions along they direction and to zero-flux
ones along thex direction. The solution of Eq.~17! is then
trivially given as a linear concentration profile

c~y!5
c12c2

Ly
y1c2 , ~18!

where c15c(Ly), and c25c(0). The entropy production
can be calculated exactly, yielding

P5Dk
Lx

Ly
~c22c1!ln

c2

c1
. ~19!

We notice thatP diverges for the absorbing boundary co
dition c250 on y50. For fixed c1 and c2 it is inversely
proportional to the sizeLy . On the other hand, for fixed
gradientb5(c22c1)/Ly one has

P5DkbLx lnS 11
bLy

c1
D .

For bLy /c1!1 this expression further reduces to

P5DkLxLy

b2

c1
, ~20!

featuring now a dependence proportional to the system s
This reflects the extensivity of entropy production.

Continuing along the same lines, one can readily perfo
the integration in Eq.~16!, leading to the following expres
sion for the variational functional in terms of geometry

Q5
Lx

Ly
~c22c1!25LxLyb

2. ~21!

Notice that unlike the entropy production@Eq. ~19!#, the
variational functional no more diverges for the absorb
boundary conditionc250 on y50 usually adopted in the
literature.

III. IRREGULAR BOUNDARIES: ANALYTIC APPROACH

The simplest setting in which possible effects of comp
geometry on entropy production can be identified is given
Fig. 1. A concentration differencec12c2 is applied across
the vertical boundaries of a cell, over a characteristic len
Ly . The cell obeys to zero-flux boundary conditions alo
the horizontal directionx, but there is now an anomaly con
sisting of extending the horizontal characteristic lengthLx by
a bump in the middle. An essential feature of the Laplac
field is to diverge in the corners created by this bump a
this makes the treatment of the problem nontrivial. The
singularities are, however, integrable~see@1–3#!.

The most straightforward guess on entropy production
that it would keep the structure of Eq.~19! as far asy depen-
dence goes, but the proportionality factorLx would be modu-
lated on the grounds of Makarov’s theorem by an additio
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size-independent factorA depending on geometry and o
concentrations only:

P5DkA~c1 ,c2 ;g!Lx

1

Ly
~c22c1!ln

c2

c1
. ~22!

Under the same conditions the variational functionalQ
should have the form

Q5B~g!Lx

1

Ly
~c22c1!2, ~23!

where now the constantB depends on geometry only.
Clearly, A(c1 ,c2 ;g)51 and B(g)51 for a flat mem-

brane @cf. Eqs. ~19! and ~21!#. As it will turn out,
A(c1 ,c2 ;g),1 andB(g),1 for a nonflat surface owing to
the curvature of the equipotential lines arising from the g
metric irregularities of the membrane. This means that a s
tem bounded by an irregular membrane possesses the
entropy production as a smaller system with regular bou
ary conditions.

To estimateA and B we apply the active zone concep
We first observe that there are connections between th
quantities. In the case ofmild diffusion, u(c22c1)/c1u
5O(«), «!1, with c15O(1), wehave from Eqs.~20! and
~21! that

P'«2 ~24!

and

Q'«2. ~25!

Furthermore,

B~g!' lim
c2→c1

Amild~c1 ,c2 ;g! ~26!

up to a factor ofDk/c1 .

FIG. 1. Schematic representation of the diffusion cell for t
first fractal iteration of a fractal generator. The dimensions of
cell as well as the boundary conditions are also indicated.
5-3
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The situation may be very different forstrong diffusion,
u(c22c1)/c1u5O(1), c15O(1). As theprevious arguments
cannot be applied straightforwardly, this case can only
analyzed numerically, as seen in detail in Sec. IV.

In the remaining part of this section we focus on the c
of mild diffusion. Our purpose is to estimateB andA analyti-
cally in this limit. To this end we follow the ‘‘independen
field approximation’’~IFA!. This is a coarse-graining argu
ment based on a compartmentalization of the full continu
space in which diffusion takes place into a finite number
properly selected nonoverlapping and noninteracting rec
gular regions, where one can write down closed express
for the entropy production and the variational functional su
posing linear concentration profiles. The nonlinearity of t
field arising from the irregularities of the boundaries is th
approximated by piecewise linear functions, entailing d
continuities of the equipotential lines at the boundaries
tween the cells.

Let us illustrate how the IFA works for the first fracta
generation of the cell~Fig. 2! and for three geometries~a!–
~c! corresponding to three different depths. We separate
cell into the three rectangles shown in the figure. Accept
linear concentration profiles in each of the side parts~i! and
~iii !, one finds for the entropy production, applying Eq.~19!
with Lx5 l andLy5 l

P~ i!5P~ iii !5Dk~c22c1!ln
c2

c1
. ~27!

Accepting furthermore a linear half penetration inside
pore~that is, a linear concentration profile until the middle
the pore@2#, thereby neglecting the remaining passive zon!,
one has for the central region~ii ! from Eq. ~19! with Lx5 l
andLy53l /2

P~ ii !5 2
3 Dk~c22c1!ln

c2

c1
. ~28!

The total entropy production of the cell becomes

Ptot5P~ i!1P~ ii !1P~ iii !5 8
3 Dk~c22c1!ln

c2

c1
. ~29!

Applying now Eqs.~22! and ~26! for the whole cell with
Lx53l andLy5 l we find @remember that we deal here wit
mild diffusion, see Eq.~26!#

Ptot53DkB~g!~c22c1!ln
c2

c1
. ~30!

Comparison with Eq.~22! leads to

3B~g!5 8
3 , ~31!

that is,

Ba
~1!5 8

9 >0.889 ~32!

for geometry~a!. Continuing in the same manner one fin
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Bb
~1!5 14

15 >0.933 ~33!

for geometry~b! and

Bc
~1!5 20

21 >0.952 ~34!

for geometry~c!.

FIG. 2. Schematic representation of the coarse-graining pro
dure associated with the IFA, for geometries~a!, ~b!, and~c! of the
first fractal iteration of a fractal generator.
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For the second fractal iteration@Fig. 3~a!# one finds pro-
ceeding along similar lines

Ba
~2!5 6

7 >0.857 ~35!

for geometry~a!,

Bb
~2!5 536

585>0.916 ~36!

for geometry~b! and

Bc
~2!5 1126

1197>0.941 ~37!

for geometry~c!.
Finally, for the third fractal iteration one finds

Ba
~3!5 3050

3591>0.849 ~38!

for geometry~a!,

Bb
~3!5 59236

64935>0.912 ~39!

for geometry~b!, and

Bc
~3!5 185258

197505>0.938 ~40!

for geometry~c!.
Although crude, this evaluation gives some insight on

physical origin ofB(g). On the other hand, the argument
half-penetration of the field in the pore is expected to h
better when the distance of the source of particles from
entrance of the pore is larger than the depth of the geom
cal irregularity. One thus expects an improvement of
quality of the predictions from geometry~a! to ~c!, a fact that
is confirmed numerically.

On inspecting the above calculated coefficientsB(k), one
sees that they diminish from one fractal iteration to the n
one. This turns out to be a general feature, implying that
coefficientsB(k) are ordered

Bf,¯,B~k11!,B~k!,¯,B~2!,B~1!,1. ~41!

FIG. 3. The second~a! and the fourth~b! fractal iterations of the
fractal generator used in our study.
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Following the IFA argument and referring to Eq.~22!, we
may thus conclude that the entropy production diminish
from one fractal generation to the next, so that the final fr
tal object is expected to dissipate less than all previous o
This is an importantleast entropy productionstatement in
respect togeometry. This statement has some very intere
ing consequences from a physical point of view as discus
in Sec. V.

Notice finally that the entropy production@Eq. ~13!# re-
mains invariant under ahomothecytransformation of all the
lengthsLx→lLx , Ly→lLy in two dimensions, as one see
from Eq. ~22!. In particular, no characteristic length sca
subsists in the expression for the entropy production.

IV. IRREGULAR BOUNDARIES:
NUMERICAL APPROACH

The Laplace equation for geometries associated with
first and the second fractal generations has been solved
merically using a general mechanical purpose Finite Elem
codeSAMCEF.

Both geometries were discretized using linear three-no
triangular elements@19#. The continuity of the shape func
tions allowed one to apply a linear interpolation of the p
tential field and a constant value of its gradient on a giv
element and thereby a piecewise constant approximatio
its gradient.

The characteristics of the meshes used in the comp
tions are listed in the table below.

Generation No. of nodes No. of elemen

1 10 327 20 052
2 10 342 20 128

The global entropy production was then computed for va
ous boundary conditions by integrating the local entropy p
duction obtained from the field and the associated flux~es-
sentially its gradient!. This quadrature was implemente
using a 25-integration points scheme derived by Laursen
Gellert @20#.

Figures 4~a!, 4~b! and 5~a!, 5~b! depict the spatial depen
dence of the entropy production, for the first and the sec
fractal generation and for boundary conditions correspo
ing, respectively, to strong and to mild diffusion. From the
plots it is evident that the active zone concept is an excel
approximation in the case of mild diffusion, but becom
less sharp as one switches to the regime of strong diffus
We also see the appearance of ‘‘hot spots’’ of dissipat
near the bumps that are localized for the first fractal gene
tion, and more extended for the second. They follow
analogous enhancement known to occur for the flux@1–3#.
This enhancement is strengthened further in the case
strong diffusion by the factorc21 in Eq. ~13!, which tends to
increase in this region because of the boundary conditio
We recall that this is precisely the regime in which the e
tropy productionP and the variational functionalQ become
clearly differentiated.
5-5
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FIG. 4. ~Color! Spatial dependence of the normalized entropy production for the diffusion cell of Fig. 1, for the cases ofstrong ~a!
(c250.1) andmild ~b! (c250.9) diffusion. Computer units.
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An additional interesting feature in the regime of stro
diffusion is a more pronounced spatial differentiation of
cal entropy production reflected, in particular, by the appe
ance of a second inactive zone of negligible dissipation s
ated near the lower boundary@Figs. 4~a! and 5~a!#.

The variation of entropy production normalized byDk/c1
~full lines! and of the variational functional~dotted lines! as
a function of the concentrationc2 in the upper boundary is
given in Fig. 6 for the first fractal generation. The followin
trends are worth stressing.

~i! P and Q decrease systematically as one tends to
regime of mild diffusion.

~ii ! As c2 tends to the value of the concentration in t
regular boundary (c151), the values ofP and Q become
indistinguishable.

Table I depicts the variation of the entropy production
a function of the concentrationc2 in the upper boundary fo
the first and the second fractal generations. As can be s
the values for the entropy production corresponding to
second generation lie everywhere below those correspon
to the first generation. The number in square brackets i
cates the power of ten.
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The scaling factorsA(c1 ,c2 ;g) andB(g) follow a similar
trend, except thatA increasestoward the valueB as one
approaches the regime of mild diffusion, in accordance w
the active zone concept valid in this latter limit.

Using the above results one may estimate the factoB
with a very good precision~up to three significant digits!.
One obtains

Ba
~1!ph>0.949 ~42!

for geometry~a!,

Bb
~1!ph>0.974 ~43!

for geometry~b!,

Bc
~1!ph>0.982 ~44!

for geometry ~c!, where the superscript ‘‘ph’’ stands fo
‘‘phenomenological.’’ Comparing with Eqs.~32!–~34!, we
see thatBa

(1) differs from Ba
(1)ph by 6%, Bb

(1) differs from
Bb

(1)ph by 4% andBc
(1) differs from Bc

(1)ph by 4%.
5-6
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FIG. 4. ~Continued!.
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These values differ significantly from the correspondi
constanta, which appears in the expression

ZMak5
r s

aLxr
~45!

for the impedance of an electrode or membrane in
Makarov regime@3#, where r s is the Faradaic resistance
which describes the rate of the electrochemical surface r
tion andr is the electrolyte resistivity of the bulk. For in
stance,

a~1!ph.0.87 ~46!

and this value corresponds essentially toLy→`. The above
results have been further confirmed by calculations usin
finite difference scheme@3,17,18#.

The finite element method also gave us the values ofB for
the second generation

Ba
~2!ph.0.937 ~47!

for geometry~a!,
01111
e
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a

Bb
~2!ph.0.967 ~48!

for geometry~b!, and

Bc
~2!ph.0.978 ~49!

for geometry~c!.
Inserting the phenomenological~numerical! values for the

coefficientsBi
(1) , one can actually obtain a ‘‘renormalized

value for the higher-order coefficientsBi
(2) etc., thus improv-

ing considerably the predictions of the theory. Combini
the empirical result for the first generation with a IFA ha
penetration argument inside the new pores for the sec
fractal generation, one easily finds

Ba
~2!ren5S 0.9492

2

3D1
40

21
.0.918 ~50!

for geometry~a!,

Bb
~2!ren>0.957 ~51!

for geometry~b!, and
5-7
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FIG. 5. ~Color! Spatial dependence of the normalized entropy production for the diffusion cell of the second fractal iteration, for th
of strong ~a! (c250.1) andmild ~b! (c250.9) diffusion. Computer units.
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Bc
~2!ren>0.970 ~52!

for geometry~c!.
One can try various renormalization schemes toge

with theoretical arguments. The best results are obtai
when one uses for the prediction of the coefficient of thek
11 fractal iterationB(k11) only the empirical coefficients o
the previousk iteration and no theoretical argument at a
This is for instance the case of the second fractal iteratio
geometry~a! for which we find

Ba
~2!fren5~0.9492 2

3 !1 2
3 30.982>0.937, ~53!

where the superscript ‘‘fren’’ stands for ‘‘fully renorma
ized.’’

Comparing these results we find thatBb
(2) differs from

Bb
(2)ph by 5% andBb

(2)ren differs from Bb
(2)ph by only 1%,

while Bc
(2) differs fromBc

(2)ph by 4% andBc
(2)ren differs from

Bc
(2)ph by less than 0.8%, which is in quite impressive agr

ment with the predictions of the theory.
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V. CONCLUSIONS

In this paper the dissipation associated with a Laplac
field, as measured by the entropy production, has been s
ied for geometries associated with the first few generati
leading eventually to a fractal boundary.

An analytic procedure based on the active zone conc
was first applied. It led to the conclusion that as the bound
fragmentation is increasing, the total entropy production a
a fortiori, the entropy production per unit surface are d
creasing. As the validity of this procedure is guaranteed o
in the regime of mild diffusion, extensive numerical comp
tations were also carried out. The results have fully corro
rated the analytic evaluations in the mild diffusion case a
provided detailed information on the strong diffusion case
well, in which entropy production does not coincide with th
variational functional from which the Laplacian field is d
riving.

The conclusion that dissipation tends to decrease w
fragmentation is at first sight surprising, since fragmentat
tends to create ‘‘hot spots’’ in which the flux—and hence t
5-8
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FIG. 5. ~Continued!.
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dissipation—are increased. In actual fact, one is here in
presence of a second, adverse factor, related to the fact t
good part of the irregularity is practically inactive from th
standpoint of irreversible thermodynamics, on the ve

FIG. 6. Variation of the entropy productionP normalized by
Dk/c1 ~full lines! and of the variational functionalQ ~dotted lines!
as a function of the concentrationc2 in the upper boundary for the
first fractal generation. Computer units.
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grounds of the active zone concept. When these two fac
are incorporated into the entropy production the overall b
ance is, clearly, in favor of the second trend. Our predict
on such dissipation trends should be amenable to experim
tal testing in a suitably constructed diffusion cell.

The tendency to decrease dissipation with increas

TABLE I.

c2 P ~gen. 1! P ~gen. 2!

0.01 6.655 6.603
0.1 3.027 3.006
0.2 1.881 1.868
0.3 1.231 1.223
0.4 0.803 0.798
0.5 0.506 0.503
0.6 0.299 0.296
0.7 0.156 0.155
0.8 6.520@22# 6.475@22#

0.9 1.539@22# 1.529@22#

0.99 1.468@24# 1.458@24#
5-9
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boundary fragmentation has some potentially interesting
percussions. Especially appealing is the idea that, w
viewed from a thermodynamic standpoint, the multitude
the fractal structures encountered in nature appear to dis
an enhanced efficiency as far as energy transduction is
cerned. It would be worthwhile to undertake concrete c
studies aiming to implement this point.

Convincing evidence that the mammalian lung is a str
ture satisfying the principal properties of fractals and, in p
ticular, power-law behavior has been reported by West@21–
23#. This author as well as Lefevre@24# have further
suggested that such fractal behavior may enhance the or
ism’s stability toward fluctuations or optimize a cost fun
tion. These results are consistent with the viewpoint dev
oped in the present work. What is more, dissipation
measured by entropy production offers a natural and ph
r.

pl.

01111
e-
n
f
ay
n-
e

-
-

an-

l-
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cally appealing implementation of Lefevre’s idea of a co
function.

The work reported in this paper can be extended alo
several other directions. The most straightforward one is
consider geometries leading to other fractal structures
more challenging problem would be to incorporate grow
@13,14,21#, as, e.g., in diffusion-limited aggregation or vis
cous fingering related problems, and/or chemical deposi
in one of the boundaries.
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@14# M. Schröder, Fractals, Chaos, Power Laws~Freeman, New

York, 1991!.
@15# S. R. de Groot and P. Mazur,Non-Equilibrium Thermodynam

ics ~Dover, New York, 1984!.
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