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Dissipation in Laplacian fields across irregular boundaries
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The entropy production associated to a Laplacian field distributed across irregular boundaries is studied. In
the context of the active zone approximation an explicit expression is given for the entropy production in terms
of geometry, whose relation to the variational formulation is discussed. It is shown that the entropy production
diminishes for successive prefractal generations of the same fractal generator, so that the final fractal object is
expected to dissipate less than all previous ones. The relevance of this result in the abundance of fractal
surfaces or interfaces observed in nature is discussed.
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[. INTRODUCTION namic potentials in equilibrium. Curiously, as it will turn out,
the range of validity of this result is incompatible with the
Recently, a number of studies on the role of the irregularLaplacian character of the associated field and, conversely,
ity of a boundary in the spatial distribution of a field obeying when this field is Laplacian entropy production no longer
Laplace’s equation and of its associated flux has been rdollows a variational principle. Nevertheless, it still provides
ported. In particular, the case of fractal boundaries has bee® interesting characterization of nonequilibrium states, both
analyzed in depth using results from harmonic analysis alon{pcally in space and globally for the system as a whole. We
with extensive numerical computations based on finite eleShall see how the “active zone™ concept allows one to in-
ment techniquefl—4]. corporate in this charactenzauon information pertaining to
One of the principal conclusions emerging from theseth® geometry of the boundaries. .
studies is the existence of universal scaling laws culminatin(% The general formulation is laid down in Sec. II. In Sec. Il
in the derivation of interesting expressions for tipedance  the entropy production associated to diffusion is evaluated
describing the system’s linear response. Many of these |awdithin _the act|ve_zone apprOX|m_at|on for boundaries corre-
find their origin in Makarov's theorem stating that, whateverSponding to the first two generations of an eventually fractal
the shape of an irregulésimply connectexboundary in two boundary. It |s.fo_und. that fragmenta.tlon. tendsdec_rease
dimensions might be, thactive zonein which most of the both the total dissipation and the d|SS|pat|on per unit surface.
flux generated by a Laplacian field is concentrated, scales 48 S€c. IV the results are confronted with, and complemented
a length[5-7. by, thos_e of n_umerlcal simulations. The main conclusions are
The relevance of the above results stems mainly from twgummarized in Sec. V.
factors. First, under ordinary conditions many familiar trans-
port phenomena such as diffusion and heat conduction are Il. FORMULATION
described in the steady state by Laplacian figléls And ) . )
second, in nature as well as in technology the space in which Let ¢ be a scalar field associated to a conserved quantity.

these fields are distributed is far from regular. The terminaft IS Supposed that under the action of a nonequilibrium con-

part of the respiratory system of mammals, biological memStraint this field gives rise to a single irreversible process

branes, porous electrodes or catalysts, provide some charatl0se fluxJ and the associated force are vectors. While,
teristic example$8—14. typically, X is the space derivative of some functibof ¢

Our objective in the present study is to explore an alter/€latéd to the derivative of a thermodynamic potentdatan
native way to characterize the complexity of Laplacian transP€ refated tap only through an appropriate phenomenologi-

port across irregular boundaries, based on irreversible thef@! O constitutive refation,
modynamics. More specifically we will be interested in the
behavior of thedissipationgenerated by the underlying pro-

cess, as the irregularity of the boundary is increased. Dissi- i i
pation is here measured by teatropy productionarguably wherelL is the(generally state-dependg¢mhenomenological

the central quantity of irreversible thermodynamji¢s,16.  OF Onsanger coefficient. The fielfl obeys, then, to a closed
It has been shown that under the assumption of constaf@volution equation of the form

phenomenological coefficients linking the fluxes to the con- )

straints this quantity satisfies a variational principle, thereby = —divi=—divL($)VF(¢), )

J=L(¢)VTi(s), L>0, 1)

playing in nonequilibrium a role analogous to thermody- at
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it being understood that any extra factors in the left-handslowly in a certain relevant range of values of the state vari-
side arising from thermodynamic derivativésuch as spe- ables. Taking up our two examples of diffusion and heat
cific heat, etg. have been absorbed in a suitably rescalecconduction one has, for instance,

time.

The local entropy production associated with and (2) J=-DVc (Fick's law),
is (10)
kL
o=J-X=L(¢)(V(¢))*>=0, 3 Dz?%const,
the overall dissipation being and
P=f odr, (4) J=—\VT (Fourier's law,
Y (12)
whereV is the volume occupied by the system. A= szconst
Let us assume first thalt is strictly constant(state- T

independent Equation(2) implies, then, that in the steady

statef(s) obeys Laplace’s equation It follows immediately from Eq.(2) thatc and T are, then,

Laplacian fields. As a counterpart, the entropy production
div Vf(¢)=V?f(¢)=0. (5) loses its variational character. Below, we illustrate this in the
case of diffusion, but the arguments apply to heat conduction
Typically, the dependence défon ¢ is nonlinear. For in- as well. We have
stance, in the diffusion of a solute in a solvent, say in an

electrolytic cell, and in heat conduction in a slab one has, — M
respectively, = | (=DVc)-V|{—|dr (12
f=_ (diffusion) or, using the expression @f for an ideal mixture introduced
T , above,
1 © 2
f:f (heat conduction p:Dkf (Vo) (13)
\%

u being the chemical potential arfidthe temperature. In an
ideal mixturew=u* +kTInc, ¢ being the solute concentra-
tion, k the Boltzmann constant, ang* the standard chemi-

ok

Hence,

cal potential. It follows that the Laplacian fields associated to— — —(Vc)zdr+2Dkf —(Vc) V( )dr

diffusion and heat conduction whéenis constant are respec- c* at

tively, Inc and T~?! rather thanc and T themselves. As (14
shown in irreversible thermodynamics under the same as-
sumptions, and provided that the boundary conditions ar
fixed or zero-flux ones, the total entropy productiBnis

minimum at the steady statrigogine’s theorei[15,16,

tegrating again by parts and using the boundary conditions
and the diffusion equation one has

1/4c)\?

P 2kJ
at v elat

ot

(Ve)?
dr+Dk Tﬁdr (15)

Psz (VE(¢))?dr. (7)
\Y

While the first term is negative definite, the second one has
To see this we differentiate both sides of Ef). with respect no definite sign: dissipation no longer derives from a varia-

to time, tional principle. On the other hand, following a procedure
similar to the one leading to E¢9), one easily sees that the
aP of functional
EZZL V(o) V—dr (8)
— 2
or, integrating by parts and using the boundary conditions, Q fV(Vc) dr (16)

Eg. (2) and the convexity of the thermodynamic potential,
is extremal in the steady stat&7].
fZZJ' ( )( ¢\? dr<0. 9) In the sequel we will be interested in the behavioPdas
at d¢ R given by Eq.(13) under the condition that, as stated abave,
satisfies in the steady state Laplaces’s equation
In real world systemd  is rarely constant. More com-
monly it is, rather, a combination df and ¢ that varies VZ2c=0. (17)
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Before we address the role of complex boundaries we evalu: C

ate bothc and P in the simple reference case of a two- 2
dimensional box of height, and lengthL, submitted to
Dirichlet conditions along the direction and to zero-flux £
ones along the direction. The solution of Eq(17) is then
trivially given as a linear concentration profile
c1—Cy I 1 4
c(y)= Ve (18) i i
P (i) | I
where ¢;=c(L,), and c,=c(0). The entropy production 9n =0 { : L
can be calculated exactly, yielding } L ! Y
I X |
I—x C2 :< »!
Ly Cq | |
| i
We notice thatP diverges for the absorbing boundary con- ' v
dition c,=0 on y=0. For fixedc,; andc, it is inversely C1
proportional to the sizé.,. On the other hand, for fixed
gradientg=(c,—c,)/L, one has FIG. 1. Schematic representation of the diffusion cell for the
sL first fractal iteration of a fractal generator. The dimensions of the
P=DkgL, In| 1+ . y) . cell as well as the boundary conditions are also indicated.
1
size-independent factoh depending on geometry and on
For BL,/c,<1 this expression further reduces to concentrations only:
B2 1 C,
P=DkL,L,—, (20) P=DKA(Cy,C3;9)L;—(Ca—Cy)In—. (22
Cy Ly C1
featuring now a dependence proportional to the system siz&nder the same conditions the variational functiorl
This reflects the extensivity of entropy production. should have the form
Continuing along the same lines, one can readily perform 1
the integration in Eq(16), leading to the following expres- Q=B(g)L—(c,—Cy)?, (23)
sion for the variational functional in terms of geometry Ly

L, where now the constai® depends on geometry only.
Q= (c— C1)?=Ly LB (21 Clearly, A(cy,cp;9)=1 and B(g)=1 for a flat mem-

y brane [cf. Egs. (19 and (21)]. As it will turn out,
A(cq,C,;9)<1 andB(g)<1 for a nonflat surface owing to
the curvature of the equipotential lines arising from the geo-
metric irregularities of the membrane. This means that a sys-
tem bounded by an irregular membrane possesses the same
entropy production as a smaller system with regular bound-
ary conditions.
Il. IRREGULAR BOUNDARIES: ANALYTIC APPROACH To estimateA and B we apply the active zone concept.

The simplest setting in which possible effects of complexWe first observe that there are connections between these

geometry on entropy production can be identified is given irAuantities. In the case ofmild diffusion |(c,—c)/cy]
Fig. 1. A concentration difference,—c, is applied across =O(e), e<1, with c;=0(1), wehave from Eqs(20) and
the vertical boundaries of a cell, over a characteristic IengtNZl) that
Ly. The cell obeys to zero-flux boundary conditions along

the horizontal directiorx, but there is now an anomaly con-

sisting of extending the horizontal characteristic lerigttby  and

a bump in the middle. An essential feature of the Laplacian

field is to diverge in the corners created by this bump and Q~¢”. (25)
this makes the treatment of the problem nontrivial. These

Notice that unlike the entropy productidiEq. (19)], the
variational functional no more diverges for the absorbing
boundary conditionc,=0 on y=0 usually adopted in the
literature.

P~¢g? (24)

singularities are, however, integratigee[1—3)). Furthermore,
The most straightforward guess on entropy production is B(g)~ lim AM(c, c,:q) (26)
that it would keep the structure of E(L9) as far as/ depen- Eyrty e

dence goes, but the proportionality factgrwould be modu-
lated on the grounds of Makarov’s theorem by an additionalip to a factor oDk/c; .
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The situation may be very different f@trong diffusion
[(c,—cy)/c,|=0(1), c;=0(1). As theprevious arguments
cannot be applied straightforwardly, this case can only be
analyzed numerically, as seen in detail in Sec. IV.

In the remaining part of this section we focus on the case
of mild diffusion Our purpose is to estimaiandA analyti-
cally in this limit. To this end we follow the “independent
field approximation” (IFA). This is a coarse-graining argu-
ment based on a compartmentalization of the full continuous
space in which diffusion takes place into a finite humber of
properly selected nonoverlapping and noninteracting rectan- (a)
gular regions, where one can write down closed expressions
for the entropy production and the variational functional sup-
posing linear concentration profiles. The nonlinearity of the
field arising from the irregularities of the boundaries is thus
approximated by piecewise linear functions, entailing dis-
continuities of the equipotential lines at the boundaries be-
tween the cells.

Let us illustrate how the IFA works for the first fractal
generation of the cellFig. 2) and for three geometrigg)—

(c) corresponding to three different depths. We separate the
cell into the three rectangles shown in the figure. Accepting
linear concentration profiles in each of the side péntand

(iii ), one finds for the entropy production, applying E49)

with Ly=1 andL,=I

4 c
p(l):p(ln):Dk(cz—cl)lnc—z. 27
1

Accepting furthermore a linear half penetration inside the

pore(that is, a linear concentration profile until the middle of I-—I__'T'_T

the pore| 2], thereby neglecting the remaining passive 2pne |
one has for the central regidii) from Eq. (19) with L, =1
andL,=3l/2

- C
P(“)=§Dk(cz—cl)lnc—j. (29)

The total entropy production of the cell becomes

— —— e S S — — t— t—

. . C
pot— p() 4 p(in 4. pli) = 8 pk(c,—cq)ln C—2 (29)
1

Applying now Egs.(22) and (26) for the whole cell with
Ly=3l andL,=I we find[remember that we deal here with
mild diffusion, see Eq(26)]

(c)

c
Pt°t=3DkB(g)(cz—cl)InC—2. (30)
. FIG. 2. Schematic representation of the coarse-graining proce-
dure associated with the IFA, for geometrieg (b), and(c) of the

Comparison with Eq(22) leads to first fractal iteration of a fractal generator.

3B(g9)=

wloo

, (31
B{Y=14=0.933 (33

that is,
aris for geometry(b) and

BY=8=0.889 (32

BM=20=0.952 (34)

for geometry(a). Continuing in the same manner one finds for geometry(c).
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Following the IFA argument and referring to E2), we
may thus conclude that the entropy production diminishes
from one fractal generation to the next, so that the final frac-
tal object is expected to dissipate less than all previous ones.
This is an importanteast entropy productiorstatement in
respect togeometry This statement has some very interest-
ing consequences from a physical point of view as discussed
(a) in Sec. V.

Notice finally that the entropy productidiEq. (13)] re-
mains invariant under homothecytransformation of all the
lengthsL,— AL, Ly—A\L, in two dimensions, as one sees
from Eq. (22). In particular, no characteristic length scale
subsists in the expression for the entropy production.

IV. IRREGULAR BOUNDARIES:

(b) NUMERICAL APPROACH
FIG. 3. The second®) and the fourth(b) fractal iterations of the The Laplace equation for geometries associated with the
fractal generator used in our study. first and the second fractal generations has been solved nu-

) o ) merically using a general mechanical purpose Finite Element
For the second fractal iteratidiFig. 3@] one finds pro-  odesaAMCEE.

ceeding along similar lines Both geometries were discretized using linear three-noded
triangular element$19]. The continuity of the shape func-

(2)_ 6~ . . . .
By =7=0.857 (39 tions allowed one to apply a linear interpolation of the po-
for geometry(a), tential field and a constant valge of its gradient on a given
element and thereby a piecewise constant approximation of
B(bz): 560916 (36) its gradient. o _
The characteristics of the meshes used in the computa-
for geometry(b) and tions are listed in the table below.
B(?=12=0.941 (37 Generation No. of nodes No. of elements
for geometry(c). 1 10327 20052
Finally, for the third fractal iteration one finds 2 10342 20128
Bl =32250=0.849 (38)
¢ The global entropy production was then computed for vari-
or geometry(a), ous boundary conditions by integrating the local entropy pro-
(3) _ 59236 duction obtained from the field and the associated fks¢
By’ = 5253:=0.912 (39

sentially its gradient This quadrature was implemented

for geometry(b), and using a 25-integration points scheme derived by Laursen and

Gellert[20].
B3 = 185258~ 938 (40) Figures 4a), 4(b) and 5a), 5(b) depict the spatial depen-
dence of the entropy production, for the first and the second
for geometry(c). fractal generation and for boundary conditions correspond-

Although crude, this evaluation gives some insight on theng, respectively, to strong and to mild diffusion. From these
physical origin ofB(g). On the other hand, the argument of plots it is evident that the active zone concept is an excellent
half-penetration of the field in the pore is expected to holdapproximation in the case of mild diffusion, but becomes
better when the distance of the source of particles from théess sharp as one switches to the regime of strong diffusion.
entrance of the pore is larger than the depth of the geometriWe also see the appearance of “hot spots” of dissipation
cal irregularity. One thus expects an improvement of thenear the bumps that are localized for the first fractal genera-
quality of the predictions from geometts) to (c), a fact that tion, and more extended for the second. They follow an
is confirmed numerically. analogous enhancement known to occur for the fiLix3].

On inspecting the above calculated coefficieBt§, one  This enhancement is strengthened further in the case of
sees that they diminish from one fractal iteration to the nexstrong diffusion by the factar~* in Eq. (13), which tends to
one. This turns out to be a general feature, implying that théncrease in this region because of the boundary conditions.
coefficientsB(®¥ are ordered We recall that this is precisely the regime in which the en-

tropy productionP and the variational functiona) become
Bf<.-.<B*"V<BW<...<BP<BW<1. (41) clearly differentiated.
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Mormalized local entropy production

. 1

(a) =z i

FIG. 4. (Color Spatial dependence of the normalized entropy production for the diffusion cell of Fig. 1, for the castesngf(a)
(c,=0.1) andmild (b) (c,=0.9) diffusion. Computer units.

An additional interesting feature in the regime of strong The scaling factoré\(c;,c,;g) andB(g) follow a similar
diffusion is a more pronounced spatial differentiation of lo-trend, except thaf increasestoward the valueB as one
cal entropy production reflected, in particular, by the appearapproaches the regime of mild diffusion, in accordance with
ance of a second inactive zone of negligible dissipation situthe active zone concept valid in this latter limit.
ated near the lower boundafffigs. 4a) and 5a)]. Using the above results one may estimate the faBtor

The variation of entropy production normalized Pk/c;  with a very good precisiorfup to three significant digiis
(full lines) and of the variational functiondtiotted lineg as  One obtains
a function of the concentratioc, in the upper boundary is
given in Fig. 6 for the first fractal generation. The following B{VP'=0.949 (42
trends are worth stressing.

(i) P and Q decrease systematically as one tends to théor geometry(a),
regime of mild diffusion.

(i) As c, tends to the value of the concentration in the By P"=0.974 (43)
regular boundary ¢;=1), the values o and Q become
indistinguishable. for geometry(b),

Table | depicts the variation of the entropy production as
a function of the concentratior, in the upper boundary for B!P"=0.982 (44)

the first and the second fractal generations. As can be seen,

the values for the entropy production corresponding to thdor geometry(c), where the superscript “ph” stands for
second generation lie everywhere below those correspondinghenomenological.” Comparing with Eqg32)—(34), we
to the first generation. The number in square brackets indisee thatB{? differs from BP" by 6%, B{" differs from
cates the power of ten. B{UPM by 4% andB(Y differs from BYP" by 4%.
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Mormalized local entropy production

=1
[: -]

a
&

FIG. 4. (Continued.

These values differ significantly from the corresponding B{?P"=0.967 (48)
constanta, which appears in the expression
for geometry(b), and
rS

ZMak:m (45
X

B!?Ph=0.978 (49

for the impedance of an electrode or membrane in thdor geometry(c).

Makarov regime[3], whererg is the Faradaic resistance, Inserting the phenomenologicalumerical values for the

which describes the rate of the electrochemical surface reacoefficientsB(*), one can actually obtain a “renormalized”

tion andp is the electrolyte resistivity of the bulk. For in- value for the higher-order coefficierﬁz) etc., thus improv-

stance, ing considerably the predictions of the theory. Combining
the empirical result for the first generation with a IFA half-

aVPN=0 87 (46)  penetration argument inside the new pores for the second

fractal generation, one easily finds

and this value corresponds essentially{e—c. The above

results have been further confirmed by calculations using a (2)ren_ 2) 40
finite difference schemgs,17,19. By =|0.949- 5+ 57~0.918 (50
The finite element method also gave us the valud3 foir
the second generation for geometry(a),
B(?P"=0.937 (47 B(?'"=0.957 (51)
for geometry(a), for geometry(b), and
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Normalized local entropy productian

. |

(a) 2

FIG. 5. (Color) Spatial dependence of the normalized entropy production for the diffusion cell of the second fractal iteration, for the cases
of strong(a) (c,=0.1) andmild (b) (c,=0.9) diffusion. Computer units.

In this paper the dissipation associated with a Laplacian

for geometry(c). _ o field, as measured by the entropy production, has been stud-

~One can try various renormalization schemes togethegq for geometries associated with the first few generations
with theoretical arguments. The best results are Obta'”eﬂeading eventually to a fractal boundary.
when one uses for ”I:e prediction of the coefficient ofkhe  An ‘analytic procedure based on the active zone concept
+1 fractal iterationB™ %) only the empirical coefficients of \aq first applied. It led to the conclusion that as the boundary
thg prewoysk iteration and no theoretical argumgnt at' all. fragmentation is increasing, the total entropy production and,
This is for mstance_the case of the second fractal iteration o fortiori, the entropy production per unit surface are de-
geometry(a) for which we find creasing. As the validity of this procedure is guaranteed only
in the regime of mild diffusion, extensive numerical compu-
tations were also carried out. The results have fully corrobo-
. rated the analytic evaluations in the mild diffusion case and
where the superscript “fren” stands for “fully renormal- yided detailed information on the strong diffusion case as
ized. well, in which entropy production does not coincide with the

i ; hat?) di L . . . . .
ZC?]mparlng these2 results we find t ‘ Eh differs from \ariational functional from which the Laplacian field is de-
B{YP" by 5% andB{?™" differs from B{)" by only 1%, riying.

B2eN=(0.949- )+ £x0.982=0.937, (53

while B differs from B?)P" by 4% andB{?™" differs from The conclusion that dissipation tends to decrease with
Bff)ph by less than 0.8%, which is in quite impressive agreefragmentation is at first sight surprising, since fragmentation
ment with the predictions of the theory. tends to create “hot spots” in which the flux—and hence the
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Normalized local entropy producticn

(b)

FIG. 5. (Continued.

dissipation—are increased. In actual fact, one is here in thgrounds of the active zone concept. When these two factors

presence of a second, adverse factor, related to the fact thatige incorporated into the entropy production the overall bal-

good part of the irregularity is practically inactive from the ance is, clearly, in favor of the second trend. Our prediction

standpoint of irreversible thermodynamics, on the veryon such dissipation trends should be amenable to experimen-
tal testing in a suitably constructed diffusion cell.

7 . . : . The tendency to decrease dissipation with increasing
8T 1 TABLE I.
5| 4
4l | C, P (gen. 2 P (gen. 2
3l P _ 0.01 6.655 6.603
0.1 3.027 3.006
2 Q -
St 0.2 1.881 1.868
10 Rl SO ] 0.3 1.231 1.223
oFf b 0.4 0.803 0.798
“ , . . . 0.5 0.506 0.503
o 0.2 04 o 06 0.8 1 0.6 0.299 0.296
2 0.7 0.156 0.155
FIG. 6. Variation of the entropy productioR normalized by 0.8 6.520—2] 6.479-2]
Dk/c; (full lines) and of the variational function&) (dotted lineg 0.9 1.539-2] 1.529-2]
as a function of the concentratiag in the upper boundary for the 0.99 1.468—4] 1.458§—4]

first fractal generation. Computer units.
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boundary fragmentation has some potentially interesting recally appealing implementation of Lefevre’s idea of a cost
percussions. Especially appealing is the idea that, whefunction.
viewed from a thermodynamic standpoint, the multitude of The work reported in this paper can be extended along
the fractal structures encountered in nature appear to displsggveral other directions. The most straightforward one is to
an enhanced efficiency as far as energy transduction is cogonsider geometries leading to other fractal structures. A
cerned. It would be worthwhile to undertake concrete cas&ore challenging problem would be to incorporate growth
studies aiming to implement this point. [13,14,2], as, e.g., in diffusion-limited aggregation or vis-
Convincing evidence that the mammalian lung is a struc0US fingering related problems, and/or chemical deposition

ture satisfying the principal properties of fractals and, in par\" ©né of the boundaries.

ticular, power-law behavior has been reported by Wa&t
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